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1 Introduction

This report gives a simple introduction to the Kalman filter. The purpose
of the Kalman filter is to estimate the state of a linear system using the
system input and (measured) output. It is based on the system model
which includes the effect of noise. The Extended Kalman Filter (EKF) is a
generalization to nonlinear systems. EKF plays an important role in making
the best use of multiple sources of measurements, each with their specific
precision, bandwidth, etc.; for instance to estimate the position, orientation
and velocity of a drone using its accelerometers, gyroscopes and GPS. The
estimation obtained with a Kalman filter can be used for analysis of a system
behavior by a human, or in a feedback loop in automatic control.

The reader is assumed to have a basic understanding of dynamical sys-
tems, state-space models (non-linear and linear), linear algebra, and basic
multivariate statistics.

2 A simple scalar example

Consider the following equation, which describes the position of a point
moving at constant speed b (we reserve letter v for later):

x(t) = x0 + bt

It can be represented by the following discrete-time state-space model:

xk+1 = xk + d

where xk is the position at sampled time k, xk+1 the position one sample
later, and d the displacement. In a real motion, the speed is probably not
perfectly constant, so a more realistic model takes imperfections into account
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with a term wk, a stochastic value following a normal distribution with mean
0 and variance q:

xk+1 = xk + d + wk

If we try to measure the position, our measurement yk is also corrupted
by noise we can model with a term vk, another stochastic value (independent
of wk) following a normal distribution with mean 0 and variance r:

yk = xk + vk

What is the best approximation we can have for the real value xk? Is it
yk? But then we would ignore the knowledge we have about the underlying
system, a point moving at constant speed. A value obtained by linear re-
gression using all our measurements? Two problems: first, we would have to
wait until the end of the experiment before processing all of them; second,
we still have wk which needs to be handled in an optimal way.

Let’s try another approach where we update recursively our knowledge
for each new measurement. Assume that we know the position at the pre-
vious sample time k− 1. We call it x̂k−1|k−1 to show it is an estimate of the
position at time k − 1 known at time k − 1 (this will be important soon),
not the real value xk−1. We do not know it perfectly; we assume it has a
normal distribution with mean x̂k−1|k−1 and variance pk−1|k−1.

Our best guess for the current position, based on the previous position
and the model, is

x̂k|k−1 = x̂k−1|k−1 + d

Of course, since wk is stochastic, we do not know its actual value. But we
can also guess the variance of x̂k|k−1: the variance of a sum of independent
variables is the sum of the variances, hence

pk|k−1 = pk−1|k−1 + q

Let us compare the position guess (the technical name is a priori esti-
mate, an estimated value based on prior knowledge) to the measure. The
result is ik, known as the innovation:

ik = yk − x̂k|k−1 = xk + vk − x̂k|k−1

Its variance sk is
sk = pk|k−1 + r

(pk|k−1 and r are the variances of x̂k|k−1 and vk, respectively, which are
independent; and the variance of xk is 0).
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If the measurement differs from the a priori estimate, we should correct
the estimate. The larger the difference, the larger the correction. Consider a
correction factor K (the correction gain) which lets us improve the a priori
estimate x̂k|k−1 and get an a posteriori estimate x̂k|k, an estimate which
takes the measurement into account:

x̂k|k = x̂k|k−1 + Kik

How can we choose K? To have the best a posteriori estimate x̂k|k, we
want to minimize its variance pk|k with respect to K, i.e. to have ∂pk|k/∂K =
0. We have

pk|k = var
(
xk − x̂k|k

)
= var

(
xk − x̂k|k−1 −Kik

)
= var

(
xk − x̂k|k−1 −K(xk + vk − x̂k|k−1)

)
= var

(
(1−K)(xk − x̂k|k−1)−Kvk

)
The measurement noise vk and the position noise wk are uncorrelated,

hence
pk|k = var(1−K)(xk − x̂k|k−1) + varKvk

Since var(xk − x̂k|k−1) is the a priori error variance pk|k−1 and var vk is
the measurement variance r,

pk|k = (K − 1)2pk|k−1 + K2r

Its minimum with respect to K gives the K we want:

∂

∂K

(
(K − 1)2pk|k−1 + K2r

)
= 0

(K − 1)pk|k−1 + Kr = 0

K =
pk|k−1

pk|k−1 + r

The a posteriori variance pk|k can be simplified:

pk|k = (1− 2K)pk|k−1 + K2(r + pk|k−1)

= (1−K)pk|k−1

To summarize, here is how to update the optimal estimate of the position
x̂k|k and its variance pk|k knowing these values at the previous step k − 1,
the model displacement d, the noise variances q and r, and the new position
measurement yk:

3



1. Compute the a priori state estimate

x̂k|k−1 = x̂k−1|k−1 + d

2. Compute the a priori error variance

pk|k−1 = pk−1|k−1 + q

3. Compute the innovation

ik = yk − x̂k|k−1

4. Compute the optimum correction gain

K =
pk|k−1

pk|k−1 + r

5. Compute the a posteriori state estimate

x̂k|k = x̂k|k−1 + Kik

6. Compute the a posteriori error variance

pk|k = (1−K)pk|k−1

This is a scalar version of the Kalman filter for the position estimation.

3 Kalman Filter

This section describes the Kalman filter for the general case of a multivariate
linear discrete-time state-space model.

3.1 System model

Let a system described by the following discrete-time state-space model:

xk+1 = Axk + Buk + wk (1)

yk = Cxk + vk (2)

where wk is the process noise with covariance Q, and vk the measurement
noise with covariance R. The real state xk is unknown.
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3.2 Derivation

The purpose of the Kalman filter is to calculate an estimate x̂k , based on the
system input uk and the measurement system output yk, as close as possible
to xk. The state estimate is assumed to have an uncertainty described by
covariance matrix Pk.

Assuming we have an estimate x̂k−1|k−1 for time k − 1 known at time
k − 1, (1) can be used to predict a value at time k, ignoring the unknown
process noise wk−1:

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1 (3)

x̂k|k−1 is the a priori state estimate, i.e. an estimate based on past
knowledge without taking into account the output measurement.

In a similar way, assuming we know the estimated error covariance
Pk−1|k−1 at time k − 1, (1) gives an estimate for the predicted error co-
variance (a priori error covariance) at time k:

Pk|k−1 = APk−1|k−1A
T + Q (4)

The first term, APk−1|k−1A
T , comes from multiplying the state by A.

The second term, Q, comes from the process noise wk. The term Buk in (1)
is known and does not add uncertainties, hence it has no effect on Pk|k−1.

The a priori estimates must be corrected with the measured output yk
to obtained the a posteriori state and error covariance estimates at time k,
x̂k|k and Pk|k. The reasons why the use of measurements is crucial is the
same as for feedback control:

• Reject model uncertainties. If (or rather, since) the model used to
compute the a priori estimates is different from the actual system, the
estimate cannot converge to the real state.

• Take care of unstable systems. If the model is unstable (eigenvalues of
A outside the unit circle), any error in the uncorrected a priori state
estimate will diverge, even if uk corresponds to a closed-loop control
signal which stabilizes the real system.

• Reject the effect of initial conditions and process noise in an optimal
way. Even if the system is stable, (3) has the same dynamics as the
system, which can be slow or have resonance peaks.
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To correct the a priori estimates, we consider the innovation ik, which
is the difference between the measurement and the estimated output. Using
(2), the innovation is defined as

ik = yk − Cx̂k|k−1 (5)

and its covariance Sk is

Sk = CPk|k−1C
T + R (6)

The innovation represents the estimate of the correction between the
measurement and the output based on the a priori state estimate coming
from the model. The idea of the Kalman filter is to use it in a linear way,
by multiplying by matrix K (the Kalman gain), to correct the a priori state
estimate and obtain the a posteriori estimate:

x̂k|k = x̂k|k−1 + Kik (7)

The Kalman gain K is chosen to minimize the expected error between
x̂k|k and xk, i.e. which minimizes the trace of the error covariance matrix
Pk|k.

Developing Pk|k (using (7), (5) and (2)) yields

Pk|k = cov
(
xk − x̂k|k

)
= cov

(
xk − x̂k|k−1 −Kik

)
= cov

(
xk − x̂k|k−1 −K(yk − Cx̂k|k−1)

)
= cov

(
xk − x̂k|k−1 −K(Cxk + vk − Cx̂k|k−1)

)
= cov

(
(I −KC)(xk − x̂k|k−1)−Kvk

)
Assuming the output noise vk and the system noise wk are uncorrelated,

cov
(
(I −KC)(xk − x̂k|k−1)−Kvk

)
=

cov
(
(I −KC)(xk − x̂k|k−1)

)
+ cov (Kvk)

cov(xk − x̂k|k−1) is the a priori error covariance Pk|k−1, and cov vk is the
output covariance R. Hence the a posteriori error covariance is

Pk|k = (I −KC)Pk|k−1(I −KC)T + KRKT (8)

The optimum Kalman gain K minimizes the trace of Pk|k (the sum of its
diagonal elements), hence ∂ trPk|k/∂K = 0. Expanding (8) and recognizing
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the innovation covariance (6) yields

Pk|k = Pk|k−1 −KCPk|k−1 − Pk|k−1C
TKT

+ KCPk|k−1C
TKT + KRKT︸ ︷︷ ︸

K(CPk|k−1C
T+R)KT=KSKT

= Pk|k−1 −KCPk|k−1 − Pk|k−1C
TKT + KSKT (9)

Recalling that trUT = trU , tr(U +V ) = trU + trV , ∂ trUV/∂U = V T ,
and ∂ trUV UT /∂U = UV + UV T ; and using the symmetry of P and S, we
get

∂ trPk|k

∂K
=

∂ trPk|k−1

∂K︸ ︷︷ ︸
0

−
∂ trKCPk|k−1

∂K︸ ︷︷ ︸
(CPk|k−1)

T

−
∂ trPk|k−1C

TKT

∂K︸ ︷︷ ︸
(CPk|k−1)

T

+
∂ trKSKT

∂K︸ ︷︷ ︸
KS+KST

= −2Pk|k−1C
T + 2KS

Equating it with zero yields the optimum Kalman gain

K = Pk|k−1C
TS−1 (10)

The a posteriori error covariance (9) can be simplified. From (10), KS =
Pk|k−1C

T ; substituting KS in (9) yields

Pk|k = (I −KC)Pk|k−1 (11)

3.3 Algorithm

To summarize, here is the algorithm to compute the best state estimate
x̂k|k (a posteriori estimate) and its associated covariance matrix Pk|k with a
Kalman filter, using the state estimate and covariance matrix at the previous
step (x̂k−1|k−1 and Pk−1|k−1, respectively), and the model matrices A, B, C,
Q, and R.
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1. Compute the a priori state estimate

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1

2. Compute the a priori error covariance

Pk|k−1 = APk−1|k−1A
T + Q

3. Compute the innovation

ik = yk − Cx̂k|k−1

4. Compute the innovation covariance

Sk = CPk|k−1C
T + R

5. Compute the optimum Kalman gain

Kk = Pk|k−1C
TS−1k

6. Compute the a posteriori state estimate

x̂k|k = x̂k|k−1 + Kkik

7. Compute the a posteriori error covariance

Pk|k = (I −KkC)Pk|k−1

3.4 Remarks

• If values for x0|0 and P0|0 are unknown, they can be initialized to zero
(vector and square matrix of the correct size).

• In (7), the Kalman gain balances the part coming from the model and
the part coming from the new output measurement. The larger the
gain, the more important the effect of the measurement. To get a more
rigorous understanding, subtituting (10), (6), and (5) into (7) yields

x̂k|k = x̂k|k−1 + Pk|k−1C
T (CPk|k−1C

T + R)−1(yk − Cx̂k|k−1)
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For the covariance, substituting (10) and (6) into (8) yields

Pk|k = Pk|k−1 − Pk|k−1C
T (CPk|k−1C

T + R)−1CPk|k−1

Assuming C is square and invertible, if R � CPk|k−1C
T (the output

is much better known than the state estimate), x̂k|k ≈ C−1yk and
Pk|k ≈ 0: the state estimate comes only from the measured output yk.

If R� CPk|k−1C
T (the state estimate is much better known than the

output), x̂k|k ≈ x̂k|k−1 and Pk|k ≈ Pk|k−1: the state estimate comes
only from the model.

If C is not square and invertible, the system may not be observable, or
observable but requiring past information to estimate the state with
the a priori estimate; or with more outputs than states, the estimate
results from the least-square solution of an overdetermined system.

• In the model, the term Buk in (1) suggests a “linear” input. But since
uk is not specified, Buk, as a whole, can represent any known input,
be it a control signal in a feedback loop or a measured disturbance.

• The system has been assumed to be time-invariant, i.e. matrices A,
B, C, Q, and R to be constant. The Kalman filter can also be used if
they are changing slowly with respect to the system states and inputs.

• Since the contribution of the measurement using the innovation and
the Kalman gain does not depend on previous values, it can be com-
puted when it is available only, and even depend on which kind of
measurement is available. At times k when no measurement is avail-
able, xk|k = xk|k−1 and Pk|k = Pk|k−1: the a posteriori estimate is the
same as the a priori estimate. Depending on the measurement, Ck, ik,
and Rk can have a different meaning with different units and sizes.

3.5 Example

Consider the following second-order discrete-time system with a scalar mea-
surement:

xk+1 = Axk + wk

yk = Cxk + vk

wk is white noise with covariance Q, vk is white noise with covariance R,
and

A =

[
1 −0.9
1 0

]
C =

[
1 0

]
Q =

[
0.1 0
0 0.1

]
R =

[
0.1

]
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Measurements are as follows:

k 1 2 3 4 5 6 7 8

yk -0.1418 0.7094 0.8558 0.3455 -0.6060 -0.7966 -0.3689 0.2038

Starting with

x̂0|0 =

[
0
0

]
P0|0 =

[
0 0
0 0

]
we apply the Kalman filter steps of section 3.3. There is no system input
term Buk.

1.1 Compute the a priori state estimate

x̂1|0 = Ax̂0|0 =

[
0
0

]
1.2 Compute the a priori error covariance

P1|0 = AP0|0A
T + Q =

[
0.1 0
0 0.1

]
1.3 Compute the innovation

i1 = y1 − Cx̂1|0 = −0.1418

1.4 Compute the innovation covariance

S1 = CP1|0C
T + R = 0.2

1.5 Compute the optimum Kalman gain

K1 = P1|0C
TS−11 =

[
0.5
0

]
1.6 Compute the a posteriori state estimate

x̂1|1 = x̂1|0 + K1i1 =

[
−0.0709

0

]
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1.7 Compute the a posteriori error covariance

P1|1 = (I −K1C)P1|0 =

[
0.05 0

0 0.1

]
2.1 Compute the next a priori state estimate

x̂2|1 = Ax̂1|1 =

[
−0.709
−0.709

]
...and so on.

3.6 State disturbance covariance Q

In (1), wk stands for all the contributions from signals which do not come
from the state feedback term Axk or the known exogenous inputs Buk:
disturbances, model structure mismatch (including approximations coming
from linearization), model parameter errors. In a model built from first
principles, disturbances can be evaluated, and independent sources identi-
fied. For each disturbance source, we consider an independent white noise
signal; all independent noise signals are gathered into a vector w∗k, and they
impact the model states through a matrix E:

xk+1 = Axk + Buk + Ew∗k (12)

Hence wk = Ew∗k, w∗k has unit covariance (its covariance matrix is the iden-
tity matrix), and

Q = EET

E and A play the same role for disturbances as B and A for the known
inputs. Depending on the way a source of white noise is filtered before
impacting the system (i.e. a periodic disturbance coming from an imperfect
wheel), the model order (number of states) should be extended. The matrix
E is typically rectangular: the size of w∗k can be smaller than wk (for example
vibrations in the frame of a machine which are transmitted differently to each
moving part; or the wind speed which changes the lift and drag forces on
each blade of the rotor of a helicopter). E should not be degenerate down
to a matrix with 0 column (Q = 0), though; otherwise the a priori estimate
would be exact (covariance Pk+1|k shrinking to 0 for large k) and ultimately
the measurements would have no effect on the a posteriori estimate.
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3.7 Measurement noise covariance R

The measurement noise covariance matrix R describes the quality of mea-
surements, and impact the weight measurements have on the Kalman state
estimate. For a scalar sensor, the meaning of the variance is clear. Inde-
pendent scalar sensors correspond to a diagonal R. A single sensor produc-
ing multiple values cannot always be considered as separate scalar sensors:
for instance a 3D accelerometer can produce measurements which are not
aligned correctly, with some cross-correlation. Combining multiple multi-
value sensors results in a block-diagonal R.

3.8 Example

Let a mass m with position x(t) and velocity v(t) = ẋ(t), subject to a force
f(t). Its acceleration is a(t) = v̇(t) = f(t)/m. f(t) is an unknown perturba-
tion whose frequency spectrum is flat between 0 and ω0, with magnitude F0,
and decreases at −20 dB/dec beyond. The sampling angular frequency is
assumed to be much larger than ω0. We measure the position with a sensor
whose variance is r and want to estimate the position and the velocity.

Solution

The perturbation is modeled as white noise filtered by first-order trans-
fer function F0/(1 + s/ω0). In discrete time, the filter is approximated by
substituting s → (z − 1)/Ts, where Ts is the sampling period; hence the
discrete-time filter is F (z)/W ∗(z) = F0Tsω0/(z + Tsω0 − 1), where F (z) is
the z transform of the force and W ∗(z) is the z transform of the white noise
source. The corresponding equation is fk = (1− Tsω0)fk−1 + F0Tsω0w

∗
k−1.

For the state-space discrete-time model, we choose the states xk (position
at sample k), vk (velocity at sample k), and ak (acceleration at sample k).
The first-order filter of the perturbation model utilizes ak as its state, since
fk = mak. Approximating integration with the Euler method (y(t + Ts) ≈
y(t) + Tsdy(t)/dt), the system model is xk+1

vk+1

ak+1

 =

 1 Ts 0
0 1 Ts

0 0 1− Tsω0

 ·
 xk

vk
ak

+

 0
0

F0Tsω0/m

w∗k

Hence

E =

 0
0

F0Tsω0/m

 Q = EET =

 0 0 0
0 0 0
0 0 F 2

0 T
2
s ω

2
0/m

2
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The measurement covariance matrix is a scalar:

R = r

4 Extended Kalman Filter

The Extended Kalman Filter is a Kalman filter applied to a non-linear
system linearized at each discrete time k. The state-space discrete-time
model is

xk+1 = f(xk, uk, k) + wk

yk = g(xk, k) + vk

where wk and vk are the process noise with covariance Qk and the measure-
ment noise with covariance Rk, respectively.

The EKF formulation is very similar to the plain Kalman filter where A
and C are the jacobians of f and g, respectively:

Ak =
∂f(x, uk, k)

∂x

Ck =
∂g(x, k)

∂x

The complete EKF algorithm follows.

1. Compute the jacobians of the state-space functions

Ak =
∂f(x, uk, k)

∂x
Ck =

∂g(x, k)

∂x

2. Compute the a priori state estimate

x̂k|k−1 = f(x̂k−1|k−1, uk−1, k)

3. Compute the a priori error covariance

Pk|k−1 = AkPk−1|k−1A
T
k + Q

4. Compute the innovation

ik = yk − g(x̂k|k−1, k)
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5. Compute the innovation covariance

Sk = CkPk|k−1C
T
k + R

6. Compute the optimum Kalman gain

K = Pk|k−1C
T
k S
−1

7. Compute the a posteriori state estimate

x̂k|k = x̂k|k−1 + Kik

8. Compute the a posteriori error covariance

Pk|k = (I −KCk)Pk|k−1
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